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Control of Mobile—Ion Contamination in Oxidation Ambients
• 

• for MOS Processing

Santos Mayo , Richard Y. Koyama , and Thomas F. Leedy
Institute for Applied Technology
National Bureau of Standards

Washington, D. C. 20234

Abs tract

= An alternative method for controlling the mobile—ion
contamination in the oxidation ambients for MOS device
processing is explored. Mobile—ion contamination in silicon
dioxide films thermally grown in dry oxygen at 1000°C on sili-
con substrates has been studied by use of a double—wall f used—
silica oxidation tube. The space between the tubes was al-
ternatively filled with chlorine, room air, or sodium hy-
droxide gas to determine if a correlation exists between the
presence of these substances in the jacket and the mobile—ion

• density in the oxide films. MOS capacitors were prepared on
these films and mobile—ion densities were measured using con-
ventional C—V techniques. The ion densities ranged from 1013
to 1010 cm 2 as a function of the jacket atmosphere. These

• preliminary results suggest that there is a correlation be-
tween the presence of cleaning or contaminating agents in
the jacket and the mobile—ion density in the oxide films.
Both cleaning and contaminating actions occur through the
tube wall.

Key words : Double—wall oxidation tube; dry oxidation;
mobile—ion contamination; MOS device processing; MOS de-
vices; oxidation ambient control; oxide growth; semicon-
ductor device processing ; silicon dioxide; thermal sili-
con dioxide films.

1. Introduction

Studies of the electrical properties of thin oxide films used in
metal—oxide—semiconductor (MOS) structures have established that mobile—
ion contamination in these oxide films causes instabilities of microelec-
tronic devices.1 Although the properties of the silicon dioxide film
and its interfaces at the silicon and metal are not fully understood,2
and more systematic experimental observation is required, it is general-
ly agreed that alkali contamination of these films should be avoided in
order to produce high quality MOS devices .3 Considerable efforts have
been made to detect and neutralize, or eliminate, such contamination dur-
ing process steps required for device fabrication. Extreme cleanliness
during process operations has been recommended , and the use of ultra-
pure low mobile—ion chemicals has been explored.~~

5 The use of thin1



passivating layers of phosphosilicate glass or silicon nitride on sili-
con dioxide films has been reported,6” and the addition of small quan—
titles (a few mole percent) of chlorine or hydrogen chloride into the
oxidation atmosphere8 1 0  has been shown to facilitate the growth of high
quality thermal silicon dioxide films.

The initial purpose of this task was to develop a measurement tech-
nique which could be used to determine directly the density of sodium in
oxidation atmospheres used for the growth of thermal oxide films on sili-
con. Ideally, a technique for in 8itu measurement of trace containina—
tion In f urnace atmospheres would meet the following conditions : 1) the
measuring system should be sensitive enough to detect Impurity densities
in the range of interest for semiconductor applications and 2) the equi-
librium of the furnace atmosphere should be kept unperturbed during the
measurements; for example, introduction of probes into the oxidation
tube or the extraction of atmospheric samples should be avoided. In or-
der to meet these requirements, a laser—induced resonance fluorescence
technique was developed. This technique, which is sensitive to sodium
in an atomic state only, was used to detect sodium in an open fused—
silica oxidation tube operated at 1000°C. The minimum detectable sodium
density was estimated to be approximately 5 x lO~ atoms/cm

3. .~ copy of• the paper which reported the details of this work 11 is included as Appen-
dix 1. The results obtained through this technique led to the conclu-
sion that atomic sodium is not the most abundant species in oxidation

• atmospheres contained in fused—silica tubes. Molecular sodium compounds
appear to play an important role in the contamination of such atmo-
spheres.

In view of the above conclusion, a thermodynamic study was made to
evaluate the equilibrium sodium species in oxidation atmospheres con-
tained in both fused silica and silicon tubes operated at 1000°C. Dur-
ing thermal oxidation of silicon, impurities contained in the substrate
or in the oxidation atmosphere come in contact with the growing oxide
film and may become incorporated into it. Contamination of the oxida-
tion ambient may result from impurities in the tube bulk incorporated
during its fabrication process,’2~~ ’ and from contaminants which diffuse
through the tube wall into the oxidation chamber.’5 It was assumed that
the source of sodium contamination in oxidation atmospheres was the tube
vail. Commercially available transparent fused—silica tubes contain
about 10 ppm sodium’2”3 while silicon tubes contain about 10 ppb sodi—
um.~~’ Sodium in such tubes is assumed to be included as a solid solu-
tion of sodium metasilicate in the tube matrix (Na20.Si02(c) in Si02(c)).
The thermodynamics of sodium vaporization from sodium silicate—silica
glasses has been previously studied in the temperature range of 1200 to
2000 IC where the equilibrium constant of the reaction Na20.Si02(c) in
5i02(c) • 2Na (g) + ½02(g) + Si02(c) has been measured.16 Using these
results, reac tions occurring at 1300 K on the tube wall were analyzed
when oxygen, water, chlorine , or hydrogen are present In the tube atmo-
sphere. Copies of the papers which report the results of these calcula-
tions 17’’8 are included as Appendices 2 and 3. These calculations show
that the presence of water in the oxidation ambient produces a rapid in—2
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crease of the sodium number density from the 10~ cm
3 range correspond-

ing to dry oxidation to about two orders of magni tude higher for water
concentration of a few ppm. Also, the relevant reactions taking place
during oxidation tube cleaning were thermodynamically analyzed. Empiri—

• cally , it is known that the use of chlorine or hydrogen chloride for in
Bitu cleaning of the oxidation tube in processing facilities is needed
to grow oxide films with low mobile—ion content. Periodically, tubes

* are flushed for several hours with 5— to 10—percent hydrogen chloride
diluted in an inert carrier gas. The calculations show that during
cleaning the equilibrium sodium density increases by several orders of
magnitude above the sodium level in the normal oxidation atmosphere.
This cleaning produces a sodium—depleted layer at the tube wall adequate
for growing clean oxide films.

Sodium diffuses easily in the tube bulk [diffusion coefficient in
silicon dioxide: 2 x l0 6 cm2/ s] 19 to the tube wall surface and replen—
ishes the layer depleted by cleaning, thus necessitating periodic clean-
ing. Contaminants from the furnace heating elements, the refractories,

- and the room air continually replenish and add to the sodium contami—
• nation in the tube wall. If the tube wall were essentially depleted of

sodium and if external sources of sodium were eliminated for replenish—
• ing the tube wall, the oxidation ambient should contribute little mobile—

ion contamination during MOS device processing. These arguments suggest
the use of a double—wall oxidation tube containing chlorine gas between
the inner and outer walls to provide a reactive sink and a barrier for
alkali contamination.

This report summarizes preliminary data on this alternative method
for the preparation of electrically stable thermal oxide films grown at
1000°C without specifically introducing any cleaning or passivating
agents into the oxidation atmosphere.

2. The Experiment

Commercially available transparent fused—silica tubes of appropri-
ate diameter were used to build a double—wall oxidation chamber with a 7—
mm wall separation as shown in figure 1. This tube was operated at
1000°C in a three—zone resistance—heated furnace. At the tube ends, the
inner and outer units were fused together to form a jacket around the
oxidation chamber; no furnace liner was used. This configuration is
similar to a single—vail oxidation tube using a fused—silica liner except
for the joining at both ends. The tube was not cleaned prior to m etal—
lation in the furnace. The oxidation tube temperature was constantly
maintained at 1000 ± 2°C. Except for short period•~ during in situ nitro-
gen anneal, the inner oxidation chamber was continuously filled with
electronic grade dry oxygen flowing at a rate of 4 cm3/s. Although this
oxidation is nominally referred to as dry oxidation, it cannot strictly

• be considered so. The commercial electronic grade oxygen used contains
about 5 ppm water and 20 ppm hydrocarbons measured as methane.2° At

• oxidation temperature these hydrocarbons decompose producing additional
water in the oxidation ambient. Moreover, it has been pointed out that

3
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at 1000°C, water from the room air around the furnace can permeate
through the 1—mm thick fused—silica oxidation tube wall. Assuming
30—percent relative humidity in the room air at 25°C, the number of
water molecules21 permeating through the tube wall is of the order of
l010 cm 2•a~~. It has been shown that small amounts of water (ppm) in
oxygen increase the silicon oxidation race.22~

2
~ The chlorine barrier

around the oxidation chamber constitutes a sink for water permeating
through the tube wall , thus reducing the inclusion of water from room
air humidity into the oxidation ambient. The jacket space between the
inner and outer tubes was filled with either chlorine (99.9 percent),
atmospheric room air, or dilute sodium hydroxide in nitrogen carrier gas,
depending upon the desired condition while oxide films were grown in the
excitation chamber. While chlorine was used, a porous quartz—wool plug
was inserted into the exhaust port of the jacket to minimize chlorine
loss to the furnace scavenger. This plug was removed during periods
when room air was allowed to backstreain into the jacket. The change in
jacket atmosphere from air to chlorine could be made in a shor t interval,
while the change from chlorine to air takes a much longer period until
the residual chlorine in the jacket is exhausted. In the final stages
of the experiment, external contamination was introduced into the jacket
by passing nitrogen through a one—percent sodium hydroxide solution at
room temperature; the gas was allowed to flow through the jacket by re—
moving the plug from the exhaust.

MOS capacitors were used as test structures to determine the mobile
ion content in 1OO~-nm thick, thermal oxide films grown on 5—cm diameter
(100) n—type silicon substrates wIth resistivity in the range from 5 to
10 fl cm. The silicon wafers (with one face polished, the other lapped
and etched) were cleaned with conventional hydrogen peroxide—ammonia and
hydrogen peroxide—acid solutions, rinsed in 18 Mfl-cm deionized water and
spin—dried in nitrogen.25 After dry oxidation at 1000°C for 212 mm ,
the wafers were annealed in situ for 30 sin in dry nitrogen.

Metallization by electron—gun evaporation of a 0.5—inn aluminum lay-
er on the oxide film immediately followed the annealing step. Photo—
lithographic techniques were used to define the gate area.* The sub-
strate contact was made by evaporation of a 0.2—itm gold (with 0.6—
percent antimony) layer on the entire back side. Finally, the capacitor
was annealed at 500°C for 30 sin in dry nitrogen. Processing steps such
as wafer cleaning, oxidation, and metallization were accomplished in a
systematic sequence with no delays or storage periods. To monitor acci—
dental contamination introduced during steps other than oxidation, each
lot of four processed wafers was divided Into two groups of two wafers
each. Two control wafers were oxidized in a conventional single—wail,

*The metallization pattern was taken from the fourth level of the NBS—3
mask set.26 Four capacitors of 381— inn diameter are available per cell
and each cell is repeated across the wafer at 5.08—sin intervals. Three
of the four capacitors have guard rings to control surface current if
necessary.



fused—silica oxidation tube provided with a liner;t the other two wafers
were divided into halves along a diametertt and oxidized in the double—
wall tube. With the exception of the oxidation step, the lot of four wa-
fers was processed as a unit. The data on the control MOS capacitors
were used to gauge the uniformity in the lot processing during the exper-
iment.

The mobile—ion density of the thermal silicon dioxide films was de— -

termined from the flat band voltage shift of the MOS capacitors induced
by bias—temperature—stress (BTS) testing using cycles of ±10 V at 300°C
for 5 sin. The resulting electric field applied across the oxide film
is about 106 V/cm. The capacitance versus voltage (C—V) measurements
were made at room temperature using a commercial capacitance bridge oper-
ating at 1 MHz with an applied test signal of 15 mV . Although the en—
tire wafer was temperature stressed for each BTS cycle, only specific ca—
pacitors (about 8 on each wafer) were bias stressed for a given BTS test.
Assuming that the flat—band voltage shift is due entirely to the change
in position of the mobile ions with respect to the silicon dioxide—
silicon interface , the density of mobile ions , Q /q, is given in cm 2 by
the expression: 27

Q C c c
~2. = ~

Vfb 
— = AVfb qX
q 0

where AV is the change in the flat—band voltage (V) observed as a re-
sult of t~e BTS test, C is the oxide film capacitance per unit area
(F/cm2), c is the relatIve dielectric constant of the oxide, e is the
permittivity of the free space (F/cm) , X0 is the oxide film thickness(cm) , and q is the electronic charge.

3. Experimental Results

The results reported here were obtained during a time period of
more than one year. Figure 2 shows the mobile—ion density in the MOS
capacitors prepared in the double—wall tube. The dot on each bar is the
average value of the span of data represented by the vertical bar. The
variation of the mobile—ion density for a given data point represents
the spread of the data taken over the complete lot of processed half wa-
fers. This variation shows nonuniformity of the mobile—ion density with

The single—wall oxidation tube used a fused silica liner separated •
from the oxidation tube by quartz wool. The space between the liner
and the oxidation tube was not sealed from the room air. The inner
tube was periodically cleaned in situ for several hours with 5—percent -

hydrogen chloride diluted in dry nitrogen. 
. 

-

ttThe diameter of the double—wall oxidation tube was such that only half—
wafers (divided along a diameter) could be processed

.6
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• Figure 2. Mobile—ion density in oxide films grown in the double—wall
oxidation tubs with different atmospheres in the jacket. The dot on
each bar is the average value of the span of data corresponding to a

• given wafer lot represented by the bars . Th. two da uhed lines repr e—
sent the range of mobile—ion density measured on the control wafers.
The bottom part shows periods when chlorine , zoom air , or sodium hydrox—
ide gas is allowed to fill the jacket.
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position on the wafer and does not reflect the measurement precision .
(The technique is capable of resolving mobile—ion densities in the range
of 4 x l0~ cm 2 for  100—nm thick oxides.) Such variation could possibly
be interpreted in terms of localized clustering of the mobile ions .28
The dashed lines represent the range of mobile—ion density of the con—

• trol wafers with oxide films prepared in the single—wall oxidation tube.
The bottom part shows the periods with chlorine, room air, and sodium
hydroxide in the jacket. During the first, second , and third chlorine
periods the gas was allowed to flow into the jacket for 5, 18, and 24
hours per day , respectively , while the quartz—wool plug was inserted
into the exhaust port of the ~~~~~~ This allowed a gradual treatment
of the tube with increasing chlorine concentration in the jacket.

Af ter 200 days from the end of the last chlorine cleaning period ,
external contamination was introduced into the jacket . Nitrogen was
passed through a one—percent sodium hydroxide solution at room tempera-
ture and the resulting gas was allowed to flow into the jacket for a
period of 181 h. Silicon dioxide films were grown during this period
with sodium hydroxide in the jacket. The mobile—ion density in the
oxide films was measured and an order—of—magnitude increase was observed
(see fig. 2). This is due to sodium contamination in the oxidation at-

mosphere resulting from the passage of sodium through the tube wall.

The initial mobile—ion density in the 1012 to 1013 cm 2 range cor-
responds to MOS capacitors prepared on wafers which were processed prior
to the first chlorine period ; the double—wall tube initially had been
installed in the furnace with no previous tube clean—up. The data show
that the first two chlorine periods were not effective In achieving com-
plete cleaning of the oxidation atmosphere. By the end of the third
chlorine period the double—wall tube data are comparable to mobile—ion
density data corresponding to control wafers processed in the single—
wall oxidation tube. After the third chlorine period, contamination lev-
els in oxides grown in both the double—wall and the single—wall oxida-
tion tubes were similar. This result that was consistently observed for
about 200 days is extremely encouraging considering that the tube was
initially severely contaminated.

In order to investigate the possibility of chlorine from the jacket
diffusing through the tube wall and becoming part of the oxidation am—
bient and thus passivating the mobile—ion content of the oxide, neutron
activation analysis was used to obtain a measure of chlorine in the ox-
ide films prepared in both the double—wall and the single—wall oxidation
tubes. Samples of area about 1 cm~ were packaged in pure polyethylene
bags and irradiated in the NBS reactor for periods of 10 and 20 mm to
thermal neutron fluences of 1.5 to 3 x 1016 cm 2. These results m di—
cate that the chlorine content in oxide films prepared in both the
single—wall and the double—wall tubes during chlorine periods is about
the same and equal to 10 ppb . Similar results obtained on plain unoxi-
dized silicon substrates indicate higher chlorine content , presumably
due to residual chlorine left on the wafers after the cleaning proce—
dure.25

8
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4. Discussion

The results presented here suggest that the mobile—ion density in
oxide films prepared in the double—wall fused-silica oxidation tube Is

• influenced by the atmosphere established in the jacket. The first oxide
film was grown immediately after the tube was installed in the furnace.
The tube was not cleaned prior to installation and the jacket was open
to the room air . The corresponding mobile—ion density resulted in the
high 1012 cm 2 range. During the next 100 days , chlorine was used for
two short periods separated by an interval with room air in the jacket.
Oxide films grown during these 100 days show a one—order-of--magnitude re—
duction in the mobile—ion density . After the third chlorine period ,
room air was allowed into the jacket and several oxides were grown at
various times during an interval of about 180 days. These oxides consis—
tently exhibited mobile—ion densities within the range of control oxides
prepared in the single—wall tube. This represents a reduction of two
orders of magnitude in mobile—ion density with respect to the initial re-
sult. By using sodium hydroxide contaminatIon in the jacket, the mobile—
ion density was increased again by one order of magnitude. Both the
cleaning action of chlorine and the contaminating action of the sodium
hydroxide occur through the tube wall. A model describing the interac-
tions in the tube with the jacket atmosphere would be valuable to inter-
pret the present results. More theoretical and experimental work is re-
quired to understand the permeability of fused silica at 1000°C to vari-
ous gases.

Neutron activation analysis results indicate that the chlorine con-
tent in oxides grown in the double—wall oxidation tube is only about 10
ppb (about l01~ cm

3). These results are consistent with results from
ellipsometric determination of the index of refraction of these oxides
at wavelength 632.8 nm where no significant departures from the nominal
value n = 1.462 are observed. Changes in the index of refraction of ~n =
0.0018 to — 0.0079 have been reported in silicon dioxide films grown In
oxygen with the addition of 0.5 to 2 volume percent chlorine at 1000°C.29
Experimental evidence shows that thermal silicon dioxide films grown at
1100° C in one—percent hydrogen chloride in oxygen on (111) phosphorus—
doped 10 ~~cm silicon wafers contain large amounts of chlorine. The re—
sidual chlorine profile measured by the Rutherford backscattering tech-
nique using a 2 MeV—~He beam indicates a chlorine content in these ox—
ides higher than 1020 cm 3.30

Oxide films grown in the double—wall oxidation tube may also be of
interest for fabricating radiation hardened devices. Although it has
been established that there is little correlation between mobile—ion con-
tamination in silicon dioxide films and radiation sensitivity of MOS de-
vices , it has been recognized that the use of hydrogen chloride during
oxidation to reduce the mobile—ion content in these films increases the
device radiation sensitivity .31 Although the radiation sensitivity of
the oxides produced in the double—wall tube has not been investigated ,
the technique provides an alternative to present radiation—hard oxide
preparation methods requiring extensive hydrogen chloride tube cleaning

9
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periods prior to the oxide growth .31 The double—wall oxidation tube
with the chlorine barrier requires no specific cleaning of the oxidation
chamber. Hence, in principle, oxidation can occur on a continuous basis
with no interruptions for  routine clean—ups as required by the conven-
tional. hydrogen chlori -I e oxidation chamber cleaning . However , addition—
al experimental work is required to completely characterize these oxides.
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Appendix 1

Detection of sodium trace contamination in furnace
atmospheres at 1OOO0C

~
Santos Mayo
Electron ic Technology Division , Institute for Applied Technology. Nauonal Bureau of Standard s.
Washington . DC 20234

Richard A. Keller
Phys ica l Chemistry Division . Institute for Materials Research. National Bureau of Standards.
Washington. D.C. 20234

John C. Travis and Robert B. Green

• Analytical Chemistry Division. Institute for Materials Research. National Bureau of Standards.
Washington. D.C 20234
(Received 12 May 1976)

Free sodium atoms were detected by resonance fluoreScence in an open cosn.sminated quartz tube bested
to 1000 C The quartz tube and furnace were similar to those used In semiconductor device processing.
Fluorescence was excited by a ow dye laser tuned to the sodium D~ or D, transition and directed along the
axis o( the futnioc. Fluorescence from the sodium 

~~, 
line emitted In the axial direction wsa collected by a

telescopic system and focused onto a photomultiplier tube The estimated minimum detectable sodium
density in the furnace Is 5 x 10’ atom s/cm 3 No free odium was detectable in a processing tube that had
not been intentionally contaminated.

PACS nurnbem 0120-Ks. 32 105g. 82 80.Hn

I. INTRODUCTION collisional cross-section reduction, reaction of the
sodium with oxygen and water , quenching of the emis-Sodium contamination in microelectronic devices has sian by molecular collisions, and scattering from turn-• been correlated with erratic electrical behavior of
ace gases, thermal gradients, suspended dust particles,these devices. ’ The electrical properties of silicon di-

oxide ftlms in metal-oxide-semiconductor (MOS) devices and geometrical restrictions related to the structure of
the furnace result In a poorer detection limit.have been the subject of many Investigations in which

sodium was shown to be one of the principal causes of II. EXPERIMENTAL METHOD
instabilities,’ Among other sources of sodium conta-
mination such as those due to materials assoc iated with A diagram 0! the apparatus used for the detection of

resonance fluorescence from sodium vapor is shown inthe processing of semiconductor devices,’ the oxida-
tion furnace atmosphere itself was suggested as a pro-
minent one because of the high diffusion coefficient of

used for oxidation.4 It has been postulated that sodium
sodium in silicon and silicon dioxide at temperatures 

Plo 

-

waler through the furnace atmosphere as free sodium
is transferred from the furnace material to the silicon 

~ W Ms w’
atoms. Contamination control during device processing s-

~has been highly recommended to produce radiation ~~~~~~~~~~hardened stable MOS devices. The mechanisms by which
alkali contamination affects hardness are not well es- P ” .‘

tablished’ although ion microprobe studies of MOS de 

-

_________

vices show a correlation of sodium content in the oxide FUSN~~E Iwith radiation sensitivity .~ The purpose of this work 
[~~~~o~~~ j

sodium impurities in furnace atmospheres used in the
is to develop a measurement technique for measuring

growth of MOS oxides and in their subsequent annealing.
It is difficult to detect free sodium atoms at atmos- 

~~.8aaw,m 
~ j  ~

________ a u
pheric concentration levels concomitant with the obsery-
ed device contamination. Atomic absorption techniques
are limited to concentration ranges above 10 atoms/cm’ FIG. 1. Expe rImental arra ngement for sodiu m detection In.
by the difficulty of measuring small changes in trans- semiconductor processing furnace. E, 0.5-mm eta lon mounted
mitted light. 7~ on torsion motor; A , power amplifier; W, sinusoidal wave gen-

Sodium concentrations as small as 100 atoms/cm’ erator ~~ . 5 Hz); 8, sweep counter; MS~ muitlecaler; V/F.
were recently detected In an evacuated tube at —28 .~~ 

voltage to frequency converter; PSD• phase sensitive detector;
C, olsopper S kHz); P, power meter; L, lens; N• mirror; T,by a resonance fluorescence technique. ” This paper telescope; D~ diaph ragm ; F, Inte rference filter 0.25-nm

tube at 1000~C. Problems associated with Doppler and .ervatton region.
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E l  -i - mospheric pressure , collisions with molecular nitrogen
- - and oxygen in the furnace completely equilibrate the

- ~- - - population of these two levels according to their sta-
- — t istical weights. “

4 4 ~- +-f4-+ - 4-Hl -
~ I II 4 4 I It H I~~-~ I I The calibration necessary to relate the density of

— 
- sodium atoms to the observed fluorescence signal was

- 
- 

done by two methods . The first method involved a corn-
- 

~
- I parison of the fluorescence intensity from Use sodium

with the fluorescence intensity from a dilute solution
of rhodarnine 6G placed in a glans cell in the cooled

- - - -~ - - —~ .- - _ i_—~_ furnace. The dimensions of the glass cell were the same
as those of the quartz tube. The second method was
based upon a calculation of the geometric factors in-
volved in the detection optics and a measurement of the

001 NM ratio of the intensity of the fluorescenc e emission to the
excitation intensity. The methods yielded results that

FIG. 2 . TypIcal laser beam mode structu re. The repetItion of agreed within a factor of 3.the pattern Is due to the two spectral ranges covered by the
spec t rum analyzer. Sodium fluorescence signals were not observable in

clean quartz tubes. Nonquantitative sodium contamina-
tion was intentionally introduced by aspirating dilute

Fig. I. Amplitude-modulated radiation from a tunable sodium chloride solutions into the hot tube for sh-~trt-j dye laser passes down the furnace slightly off axis (2°) periods of time and then waiting for several hours un-
and through a hole In the laboratory wall. The fluores- tll a relatively constant level of contamination was ob-
cence emission traveling out of the tube in the direction served.
opposite to the laser beam is collected by a telescopic
system, passed through an interference filter (centered IlL FLUORESCENCE SIGNAL RESULTS
on the D, line) , and focused onto a photomultiplier tube.
The ac signal corresponding to the fluorescence is syn- The fluorescence signal from sodium vapor inside of
chronously detected digitized and recorded on a multi- the quartz tube is shown in Fig. 3 . These data are the
channel analyzer as ’s. function of the wavelengh of the accumulation of 100 2-sec sweeps . The average cx-
excitation laser. citation power was 70 mW. The observed ltnewidth

of the excitation spectrum (7 .5 GHz or — 0. 01 nm) agrees
The excitation source was a commerical cw dye well with the calculated linewidth taking into account

laser which was longitudinally pumped with powers up Doppler (2. 7 GSa) and pressure (6 .2 GHz) broadenings
to 5 W by an all-line argon-Ion cw laser. An Intracavity under the conditions of the experiment . This good agree-
birefrlngent filter was used to coarse tune the dye laser ment is indicative of the frequency stability of the laser
with a resultant bandwidth of 0. 03 nm. Insertion of a system. Background blackbody emission from the fur-
0. 5-mm etalon into the cavity further narrowed the out - nace was discriminated against by the sodium interfer-
put to 0.003 tim. The mode structure of the dye laser ence filter and synchronous detection. The nonzero
wan monitored by observing a small fraction of the beam signal observed off resonance Is caused by scattered
with an interferometric spectrum analyzer (8-0Hz free laser light. The scattered light signal is reduced ap-
spectral range). A typical mode structure Is shown in proximately an order of magnitude when the D, tran-
Fig. 2. These laser modes fall within the broadened
absorption line of sodium (— 0. 01 nm). The laser emis-
sion wavelength could be repetitively and reproducibly 2500-
scanned over the absorption line by rotating the etalon
through an angle of about 1° with an oscillatory torsion ,_ :
motor driven by a low-frequency (0.5 Hz) low-amplitude ~ 2000 - .
s inusoidal wave. The laser wan tuned to center the so- . .
diu rn D, resonance on the approximately linear portion 

~ 
—

~~
. —

of the sinusoidal wavelength scan. The signal-to-noise :
ratio was increased by repetitive scanning of the laser
wavelength and summing the data from approximately ~ 1000 . ., . .
100 sweeps in the multichannel analyzer . The wavelength ~~ ~~~~~~~~~~~~~~~~~~ ~•-~~~~

scale was calibrated by passing a portion of the output ~
of the laser through the spectrum analyzer.

A major limitation to the minimum observable sodium 
__________________________________________

signal was scattered laser light. Extreme care was ~~ 
..~g -h -~ S IS 25 35

necessary In the placement of optical components , aper- rREflhI(IICY SHIFT ~HZhires, and the dumping of the laser beam to minimize
back reflection . Contributions from scattered light were FIG 3. ~~ ium fluorescence signal detected In contamInated
further reduced by excitation of the D5 line (589 .6 nm) furnace stmoshpere pressure , l000 ’C. ThIs slgnsl corre-
and observat ion of the D, emission (589 .0 nm). At at- sponds to 2.55101 sodium atoms/cm ’.
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I TA BLE I. Constants for calibration usIng rhodamine 6G.

~~(5a9.0)/L~5l559.0) 0.19~ I,(589.6) 70 mW ’

o~(W1l .5) 2.4 x10 15 cm’’ 0.55 Ref. 14)

~~ de9.s) 7 .8xl0”~ cm2’ 0. 01 —0.04 Gtefs . 15 and 16)

J4 3 .5xI0 ’3 /cm~’ A5 6 1 s 1 0 ’’
4(511.8) 9.0 mW’ A,~1

‘Experimentally determined . ‘Calculated.

sition is excited and the I), emission observed , in interference filter [ T (A) I  into the spectral emission
agreement with the transmission characteristics of the curve of the dye [V(t~)J.
inter ference filter. Any reduction In the absolute mag- A5 = f T(A)F ( A) d AI f  F (X ) dA . (4)nitude of the scattered light results in a reduction in

~ 

- the a.sociated shot noise and in noise resulting from A5, is calculated by assuming equal population among
fluctuations in the scattering medium. After careful a- the substates of 0, and D, levels and including the
lignment of the optical system , a major contribution to effects of the interference filter ,
the scattered light was reflections from suspended dust a
particles in the tube. This contribution could be reduced As, j j .) T(58 9 . 6) +  (i~i) 

T(589 .0) .
by flushing the tube with clean nitrogen. A statistical The statistical weights of theD1 and LI~ levels are 2 andanalysis of the data in Fig. 3 shows that the ratio of the
fluorescence signal at the peak to the noise in the scat - ~ respectively. 0~4~ can be calculated from the oscilla-

tor strength Snd the calculated linewldtb Contributions.”tered light is > 50. The long-term precision is better The quantities for Eq. (3) are given in TabLe I. “~‘~than 10%.
V. CALIBRATION 2(V. CALIBRATION I

The quartz tube was replaced by a room-temperature Equation (2) relates the observed fluorescenc e inten-
- - cell containing a d~’fut~ solutton of rhodamlne ~~ ~~~~ 

sity to the density of sodium atoms. Rearrangement of
solved in ethyl alcohol. Absorption cross sections and this equation for the case where both excitation and

obser vation are at 589.0 tim givesfluorescenc e quantum yields for this material are well
known,’4 For the measurement of the fluorescence Inten- _~~,~589.0) [0 (589 o)lQ~~~~G1’ (6)aity at the wavelength of the sodium 0, lin e, it was cx- N58 — I~(589. 0)
pedlent to irradiate at a shorter wavelength to prov ide
a reasonable cross section and to reduce scattered light All quantities to the right of the equality sign are known
from the windows of the cell and dust particles in the or can be measured. The values of 0,1, Q, and A are
liquid. A convenient wavelength was found to be around listed in Tables I and U. The intensities of the sodium
570 tim. The laser beam was deflected by the solution fluorescence and laser excitation were measured by
and windows on the cell, requiring a slight realignment comparison with an electrically calibrated pyroelectric
of the optics to maximize the fluorescence signal and detector. ” Neutral-density filters were used with PIN
minimize the scattered light , diodes to change intensities in known ratio, into the

The calibration process can be understood by con- range of linearity for these devices. The geometric
collection factor was evaluated by consideration of thesidering the following equations: optical design shown in Fig. 1.

1~(589 . 0)=’ c~(571 . 8) N5110(57l , 8)Q5A50, (1) The results of both calibrations are listed in Table
158(589.0)=ir55(589.6)N51t15(589. 8)Q5,.455G.  (2) III. The data for calibration 2 were preliminary and are

recorded here only as an independent check on later
1,, and I,,, are the measured fluorescence intensities results.
from rhodamine and sodium, the G’s are the absorp-
tion cross sections s.t the indicated wavelengths, the VI. OXIDE IMPURITY RESULTS
N’s are atomic or molecular densities , I is the length A clean (the quartz tube was rinsed in hydrofluoric
from which fluorescence Is being detected , the Q’s are and nitric acid solutions and washed in deionized water)
fluorescence quantum yields, the A ’s are the spectral
fraction of the emitted light passed by the interference
fitter , and 0 ii a geometric collection factor assumed
similar for both samples . Taking the ratio of Eq. (l) TABLE II. AddItional constants for calibration with calculated
and Eq. (2) and solving for t(,,, gives Eq. (3) , gsonsetric factore.

— N  1 (589.0) o~(57l .8) ‘p(571’8)
~~~L,~~L ~~ 

3 . 5 x l 0 ~ ’ cm” C 5.5x 10 ”
N,18.— ~ I~( 5$Q .0) a~,(589.6) I~(589 .6) Q,,,A,,, t~,(589.0) 360 pW 5 1 60 cm ’

4(589.0) 140 mWb

All quantltiea in Eq. (3) are known or can be measured. ‘Calcula ted.
A~ is found by folding the transmission curve of the ‘Experimentally det rmined.
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TABLE III. Observed sodium densIties and estimated minimum sodiu m might be expected . Such conditions would Im-
detectable quantities . ’ prove the atomic measurement except for additional

Calibration Na densit y S / N  MinImum detectable sources of light scattering at the capped tube ends. How-
(atoms/cm2) qusntlt~ ’ (atoms/cm’) ever , these sources of interference could be practically

eliminated by an alternative geometry discussed below.1 (rhodamlne) 3— 12 XII ’ 56 5—20 u10~
2 (geometric) 4_ 16X 10’ 22 2 . - - O X I O ’

__________________________________________________ 
There are several improvements which should de-

‘Range reflect s uncertainty In Q, 
- crease the detection limits reported above. The first

‘Signal to noise equal 1*, ~~~~~. of these involves frequency modulation of the excitation
beam and synchronous detection of the fluorescence to -

reduce contributions from frequency-independent scat-
tering. Frequencj modulation of the cw dye laser isquartz furnace tube with end caps was used to grow relatively straightforward.oxide films on silicon wafers. After the oxide film

was prepared, the end caps were removed (water from
ambient humidity may have diffused into the tube during Scattered light could be significantly reduced by using
the measurement : see Sec. VU) and it was found that a monochromator in place of the interferenc e filter to
no sodium fluorescence was observable within the de- completely isolate the D1 excitation from the D, emis-
tection limits reported in Table III. The oxide films Sion. The insertion of the monochrornator may reduce
grown on silicon in this clean tube showed an order of the total number of photons reac hing the photomultiplier
magnitude higher sodium contamination level than is tube to the extent that photon counting might be neces-
normally present on similar films prepared in produc - 5arY.
tion-type semiconductor processing oxidation tubes
operated in a controlled environment. These results A reduction of scattered light and an increase in light
were obtained by capacitance-vs-voltage measurements gathering power could be accomplished by mounting the
performed on MOS capacitors after application of sisr.- detecting optics in ports distributed down the tube and
ultaneous electric bias and temperature stress cycles, viewing the fluorescence at right angles to the excita-
Electric fields of about 10 V/cm were established a- tion. This has two additional advantages: (1) informa-
cross the oxide film by use of positive or negative 10-V tion on the spatial distribution of the contamination
gate polarization while the device temperature is main- would now be avaUable by viewing through different
tam ed at 300CC for 10 mm (MOS-CV-BT stress ports: (2) windows on the quartz tube would not Inter-
echn~~~~~~ fere with the measurement because laser scattering

from them would be far from the field of view subtend-
— Similar oxide layers were grown on silicon in a sodi- ad by the detector.

urn-contaminated oxidation tube where sodium fluores-
cence from approximately 10’ atoms/cm’ was measure- ACKNOWLEDGMENTS
able. MOS capacitors built on this oxide exhibited two
orders of magnitude more sodium content than similar The completion of this project was facilitated by manycontrol capacitors prepared in a standard processing fruitful discussions with Gabriel Luther of the Quantumfacility as measured by the MQS-CV-BT stress Metrology Section. Thanks are also due to John 0.1st
tec hnique, and Edward Zalewskt of the Radiometric Physics Sec-

tion for help in the absolute measurement of lightV II . DI SCUSSION intensities.
It is important to note that the technique described

above is a measurement of free sodium atoms only.
Sodium present in compounds (e.g. , Na,O and NaOH)
would not be detected. These results are important for
understanding the apparent discrepancy between the
oxide impurity measurements and the resonance fluo-
rescence results. It Is a difficult thermodynamic pro- ‘This resea rch was conducted under the JoInt suiplcee oF the
blem to estimate the concentration of oxides and the Semiconductor Technology Progra m and the Laser Chemistry

Program of the National Bureau of ~andards. P*rti*l sup-
hydroxide from a knowledge of the free sodium con - port was provined by the Defense Nuclea r Agency.
centrat ion because the concentrations of other species ‘R.J. Krlegler , 12th Anmwl Proceedings Reliabil fly Physics
(e.g., H, and OH) are uncertain by many orders of mag- 1974 QEEE, New York , 1974) , p. 250 .
nitude. It should be possible to measure the hydroxyl ‘T.W. Hlckmott , i. Appi. Phys. 46 , 2583 (1975) .2B. Yurash and B.E. Deal, J. Eiectrochem . Soc. 115, 1191radical concentration in the furnace by a similar reso - 0588)
nance fluorescence technique. ” Knowledge of both the 

~D.Ii. Fewer and W. L. Gell, Texas Instruments Inc . Tech-
free sodium and the hydroxyl radical concentration could nical Report No, RADC-TR-66-.34 5, 1966 (unpubli.had).
be used to determine the sodium hydroxide concentration . 5B. L. Gregory , IEEE Trans. Nucl. Sd .  NS-22 , 2295 (1975).

5H. Hughes , R.D.Baxter , and B. Phillips , IEEE Trans.
Ned . Sd. NO-IP, 256 (1972).In a production semiconductor processing furnace , ‘T.E. Burgess and H.M. tbnega , .1. Eiectrochem. Soc . 116,where the o..idation atmosphere Is completely enclosed 1313 0969).

in the quartz tube and carefully controlled dry oxygen ‘n. loll, F. arumia, and A . Moretti , J. Opt. Soc . Am. Si,
is used, a more favorable ratio of free sodium to total 12 51 0911).
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ABSTRACT
The thermodynamic equilibria established in fused silica oxidation tubes

operated at 1000 C are analyzed. Transparent fused silica tubes used for ther-
nial oxidation of silicon contain about 10 ppm sodium impurity. At oxidation
temperatures sodium diffuses in fused silica, evaporates into the oxidation
ambient. and reacts with residual water contaminating the oxidation atmo-
spbere~ During the oxidation cycle enough sodium is incorporated into the
growing oxide Aim to be detected later by capacitance measurements in metal
oxide semiconductor (MOS) structures. Reactions taking place during cur-
rently used In situ furnace cleaning procedures are analyzed. Calculations in-
dicate that the amount of sodium removed from the fused silica tube wall
through chlorine or hydrogen chloride cleaning Is substantia l The reaction
rite Is regulated by diffusion of sodium in the fused silica. The use of iodine
and hydrogen Iodide as cleaning agents Is discussed.

Oxidation of silicon has been the subject of many the purpose of this paper). The oxidation atmosphere
InvestIgations su ed at understanding metal oxide generally consists of pure dry oxygen flowing along
semIconductor (2605) device instabilities caused by the tube with laminar flow at about 4 cm’/sec (equiv-
the actIon of mobile ion impurities localized In the alint.to 0.5 Ed ft’/hr). Transparent commercial fused
oxide tUrn (1). Test vehicles In the form of simple silicA tubes currently used for this purpose generally
260$ capacitors built on silicon dioxide Alms 60-100 have an average sodium content of 10 ppm (8-9).
sun thick are frequently used to study ionic con- Sodium In the tube bulk diffuses easily [diffusion
lamination In thermal silicon dioxide. The mobile coefilcient In SiO,; 2 ~ 10~~ cm2/sec (l0)J to the
Ion density In the oxide film can be ealcujated from tube wall surface. This in turn causes the appearance
capacitance measurements after thermal cycles have of contamination in silicon dioxide films grown in
been applied to the device (2). the oxidation tube (11).

Several contaminatIon sources may contribute Im- The purpose of this work is to study the oxidation
purities to th. oxide film. Due to their high natural atmosphere used to grow thermal silicon dioxide films
abundance, alkali species are the most common Im- as a source of sodium contamination introduced into
purities likely to contaminate silicon dioxide. Sodium, the film during the growing cycle. The thermodynamic
potassium, and lithium may cause Ionic-type instabtl- equilibria established in fused silica oxidation tube
Ities in the oxide, Sources of alkali contamination atmospheres at 1300’K were considered.
can be clsuifled according to their origin as: (I) . ,

bulk mud surface impuritIes already contained In the Reactions Occurring in Fused Silica
silicon wafer before oxidation, (U) Impurities intro- Oxidation Tubes
duc.d into the oxide film during silicon high tempera- The thermodynamics of sodium vaporization from
lure oxidation and annealing, and (11*) impuritIes sodium silicate-silica glasses has been previously stud-
Introduced after oxidation through metallizatlon (3). led in the temperature range of 1200’-20.O’K where

Considerabl. research has been done to determine the equilibrium constant of the reaction Na,O . $10,
the presence of Impurities In microelectronic process (in $10,) -a 2Na(g) + ½ O~(g) + Si02 (c or glass)
materials. Analytical techniques such as flame emis- has been measured (12). Values of IC = p~(Na)
Eon, atomic absorption, resonance fluorescence, neu- p~b(0,) (a (Si0~) Ia (NasO . SiO,)] were reported for
Iron activation, and others have been used for trace molar ratios of $10, to Na20 varying from 1.69: 1 to
contamination dstsctlon (4—6). Metalllzation of micro- 3.88:1, where the a’s (activities) were expressed in
electronic devices has also received * great deal of terms of mole fractions. The results indicated Raoult
attention regarding the Introduction of ionic content- law behavior was approximated In the higher ratio
lnatlon In the oxide tUrn from both the evaporation solutions. On this basis, extrapolation to larger ratios,
process used sad contamination in the metal (7). I.e., 10~ (about 10 ppm sodium in the silica) leads
These results show that impurities may be introduced to the value K = 25 x 10-15 at T = l300’K. Using
through several processing steps and play a significant this value and thermodynamic data from Table VII
role in determining the electrical properties of the we obtain AII’rese(NasO . SiO,[10 ’ mole fraction in
device. $10, gis]) = —376.8 kcal/mole. This value Is in rca-

During oxidation of silicon, sodium Impurity con- sonablv good agreement with the corresponding JANAF
tam ed in fused silica oxidation tubes evaporates from (13) value for Na,O . SiO,(gls) of —373.2 kcal/mole.
the tube wall Into th. oxidation ambient. In typical The difference between these values can be considered
oxidation facilities, furnaces employing fused silica a measure of the solution effects, such as formation
tubes are operated at about 1000’C (or 1300’K for of NasO ‘ x Sf02 specie,, and the difference between

the properties of the simple compound as a glass andssmioondu.tor pros. the same species in solution. For this reason the use
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Tubls 1. Equilibrium atmosph,re is fus ed silica dry oasdat ioa tub, at 1300’K. Sodium cont ent is fused
silica bulk is 10 ppm, osy~.n at I alas.

_ _  ~-- 

Reaction K p(at m i Nicm ‘i

Ill 5k O.’g) • 0(5) 1.75 10 ’  9(0) I 16 — 10’
121 Na.O . 8(0. (In 8th.) -. Na,O(g) SiO.(ct 7.5 10-” ptNa’O) — 9 . 50-”
(31 Na.O ‘ 810, (Ia 8i0r) . SNs( g) 5k 0,(g) SlO~tci  2.5 • 50-” p(Ns) — .6 . 10 ‘ S - 10’
1 41 NssO’SlO. (in8l0.).. Na(g) NaO(g i 8t0,t c t 5.1 • 10-”
Ill Na.0(g) + lk O.(g) .. lNaOig) 0.42 ptNaO ) — 5.1 (0 “ 3.2 10’
III Ns,0 - 810. (In 850.) -s SlO.(g) -. 2NaO(g ) ‘ SlO.(c 3.3 c 10

Total audium duOaity1 1.2 ‘. tO’

of the former value (—376.8 kcal/mole) derived from or (ii) use of sodium-leaching agents to deplete a
measurements (12) was preferred, assuming that any region j ust under the inner w*H surface prior to oxi-
systematic errors in the calculations would be par- dations. The first approach Is based on the well-known
tid y compe’~sated. tact that polycryatalline silicon tubes can be produced

A number of reactions take place in fused silica with 1000 times less sodium content than found In
oxidation tubes operated at 1300’lC. Table I ~howa silica tubes (17) Empirical results indicate that oxide
the equilibrium1 atmosphere resulting from 1 atm films grown on silicon using recently installed silicon
dry oxygen reacting with the tube wall. The partiai oxidation tubes produce cleaner films (lower sodium
pressure corresponding to atomic oxygen resulting content) than similar oxides prepared in fused silica
from equilibrium dissociation of the oxygen molecule tubes.
is shown through reaction [lii as p(O) 1.76 x 10-7 Polycrystalline silicon tubes develop, however, ob-
atm indicating that reactions with atomic oxygen are servable sodium contamination after being in opera-
not sIgnificant. The evaporation reactions (2], (3], (ion for reveral months, when the use of sodium-leach-
and (4] show that sodium in the oxidation atmo- ing egents is then required. This contamination, de-
sphere is present as both atomic (Na) and molecular veloped under strictly controlled production-oriented
(NasO, NaO) species. Reaction [5] shows the con- environments, could be explained by assuming that
version of NasO Into NaO through interaction with during tube operation at oxidation temperature sodium
oxygen. These results Indicate that In a dry oxidation arising from external sources reaches the oxidation
atmosphere atomic sodium is about three times snore chamber by diffusion throuch the tube wall The con-
abundant than molecular sodium compounds. The tamination source could be located in furnace refrac-
total number of sodium atoms In the equilibrium tories surrounding the oxidation tube (II) Once the
oxidation atmosphere is 1.2 >< 10~ cm 3 (both atomic trIbe wall becomes losded with sodium above a critical
and molecular species Included), level, evarorst ion Into the oxidation atmosphere starts

Table II shows the equilibrium atmosphere re- to predominate. This Is a slow process that may take
suiting in fused silica oxidation tubes at l300’K when a long time (several months) in continuous operation
water is added.’ The reaction system [7] shows that dependin~ on environmental conditions (78)
water Is more stable than 011 by factors ranging from
20 to more than 100 times as humidity in the oxida- Reoct ions Oc.cutring WI~en Cleaning Fused
tion ambient increases. For increasing water content Silica Tubes
the most significant changes are seen In p(Ns2(O}I)a) Cleaning of oxidation tubes is a frequent operation
and p(NaOH) as resulting from reactions (8] through in processing facilities. At room temperature, the clean-
(11]. The sodium number density for I ppm water
impurity goes to 3.3 x 10’ cm ”3 or a factor 27 higher lilt —-r ’ -r -—
than the dry oxidation condition. If 30 ppm water

4506is present In the oxidation ambient the sodium num-
ber density at equilibrium raises to 1.7 x 10’ cm ’
or a factor 142 higher than the dry oxidation co~di-
tion . Table III and Fig. I summarize these results.4

N’The above calculations show that sodium contsnslna-
lion developed in oxidation atmospheres could be
explained in terms of contamination in the bulk fused ~
silica even If the furnace tube wall surface were per- —

atmospheres, it is necessa~~ that the bulk tube ma- - , 0~~~~~
- O l;5fect ly clean. To reduce sodium density in oxidation ~~

‘

ton al itself be aodium free. Two different approaches 5
have been tried: (i )  use of a sodium-free tube wall.

SAll ca1culated values presented In this work refer to .qulil b. B .0
r iurn candlttofla said represent lim iting salon for the actual sYl’ 0tern , because of kinet Ic and dimialon factors. in

‘Data uaed to calculat , reaction equilibriu m co nstant s are
listed in Table VII. The actual calculat Ion echsme is illustrated in
the App.ndlx.
‘~ xpertmentsl evidence show, that in a typical “dry ” oxIdatiOn

atmoeali.r. the water content Is in the 25 30 ppm ran,. (54 , .
Moreove r at oxidat Ion temperatures In the rang. 5e,~.l36o.C It

Because of errora and approximat ions Involv ed In thermody. . , . - , — - ~~ -

was reported that water and/or hydro gen from th, extern al Sm.
chamber (II) 10 1bie~ t can dtftu.s through the Mites tube wa ll into the oxid st lon

numb data used to ev aluate the equilibriu m rem,lts , an abeolute
error of ±50’s could be expected in these calculatIo n,. The ‘el.. II III 20 30 40 50 60 70
tive error Is much sm aller. Resona nce fl uorescence measurements
,hon’ed that In noen fused si lica ostd at lon tube. no free so ’t ’um
was detected (15) . This exoer imental result c.n l’~ understood PA TIO CINTINI IN OXI DATION ATN OSPH UI ppm )
In term. of calculatio n, shown In 591. I. For auMcient iy hich
water co nten t in the o~ldat Ion atmosphere the amou nt of ref an. F,5. 1. Tot al sodium d~,s( y 1cm ~1 at equilibrium in Issed
dium detecta ble thr oue h resonance fluore scence techninue could
be substantially reduced due to ,.dium reactivity with esceas siii ~a os i dotlea tube atmosphe re as a lsnct (oa of temperature and
water . Thus , f ree sodium is converted into compound sodium and w ate, impurity. TI.. sedium cosceatcutlon in silica Is assumed 10
consequently become, not detectable by the abo,e.m.nttoned
technIque. Pfffi. 9(02) ii 1 atsi.
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log can be accomplished using convenuunal acid solu-

a tions. At oxidatIon temperat ures, the cleaning is made
‘ a - in situ by using 8-10% chlorIne or hydroge n chloride

• ii diluted in an inert gas carrier This treatmerai rc~a moves sodium contained in the tube inne l “skin”
down through a convenient depth A typical cleaning
action of this kind requires up to 20 hr of continuous
treatment flushing the cleaning gas at about 4 cm5/

~1½1~ I sec (0.5 std ft’/hr). The aeveral reactions taking

~~~~~ 

- place during this process are summarized in Table IV
~. a~~a

s e.fl a 
~Ia,., as .1M.4 m,e~~un ~ Reactions 1161, t ill, and [18] are solved as a aimul-

~~ ‘ 5 ’  3 taneous system. The resulting sodium number density

I 
I 

~~J ~ at equilibrium In the tube atmosphere goes to 8.8 x
10k’ cm 3 or a factor 7.3 x 10’ higher than the
equilibrIum sodium number density in a dry oxida-
lion atmosphere. Reactions 116]. liii, and [20] show
similar results due to hydrogen chloride cleaning.
The increase in sodium number density with respect
to the dry oxidation condition Is also in the 10’ range.
Microdroplets of liquid sodium chloride, if formed
on the tube wall hot zone, would be removed by the
gas stream and transported to a cooler tube zone

.5 where sodium chloride precipitates on the wall (so-
dium chloride melts at 801’C). This “transpiration• — 
mechanism” continues while sodium In the hot zone
Is available for reaction. It should be mentioned that
sodium chloride formed in the gas phase Is carried

- 
down the flushing gas stream and condenses also at
the cooler zone where the temperature Is appropriate.

Iii 0 The cleaning action can be interpreted In terms ofI — 
~~~~~,‘ 

~~~~~~~ 
I 

relocating sodium in the tube, depleting the hot zone.
and enriching the exhaust tube end where the wall

I 

~~ ~ :~;;~ 
~ temperature Is appropriate for condensation.

J ~ 
Stoichiometric equilibria in reactIons [17] through

~~~~ ,_ 
‘ ‘.. (20] require the use of about i.5g of chlorine or hy-

drogen chloride per gram of extracted sodium. As-
sum ing that the oxidation tube wall surface is about
40C0 cm’ and the reaction depth in the wall is 10—’
cm, the total reacting volume Ia 4 cm5 or about log

I 
~ fused silica. Assuming ID ppm sodium content in the

J ~ I fuaed silica , the amount of sodium reacting is 10 4g
which requires the use of 1 5 ~ 10 tg of chlorine or
hydrogen chloride for complete reaction equlllbrltam

g/cm’. At 4 cm1/sec flow, the chlorine mass transported
The density of 10% chlorine at 1300’K is 6.74 x 10

- ~ aul.i.ui through the oxidation tube is 2.7 x 10 g/sec This
a - shows that the reaction rate is regulated by diffusion

j of sodium in the fused silica When sodium in the
wall bulk diffuses to Use wall i,u,face, the zeaction

~ Ia with chlorine takes place iminediutely. if , prdctli:e.
U a cleaning period of about 20 lii c. used to deplete

the tube wail. The longer the e leaad’ig pea lcd, the

~ ~
longer the oxidation tube can is*ei be operated uiidei

as acceptable oxide growing condItionS These calculi-
tion. indicate that the amount of sodium .‘ern’,ved
from the fused silica tube wall ihiougi. cI tut ine or

- ~~aI 
-.. ‘mu I :!si~~~~~! hydrogen chloride cleaning is aiabstarith.l anu 111111

r-ç
~

_
~
q such cleaning certainly redioes t i e  sudiutti coiitl.,iI

— — — in the inner tube wall surfe,,e
I i i U I  t i t  11 Iodine or hydrogen iodide sat. ais , be ~~~~ tot 0 ante

oxidation tube cleaning The ie’ietint reactions taking

~~~~~~~~~~~~~~~~~ 

place are summari sed Ill 1~ bie V Iteactauns 1251
through 128 ] show the eift cli~.es.ess ‘.1 His type of

$ ‘ cleaning indicatIng that Iodine -‘r Iiy.’ *tges’ iodide
ff ~~ 

‘ ~~~~~~~ could be used instead of t illt’,-tlIe ut ta1tiz,.gen chlorI4e.
~~~~~~~~~~ 

However, due to evu,nonik ‘-cc., ‘ii, ’. to, latter are
~ more extensively used in piacilee. Siai.c thermody-

g - namlc data are not Sv&laI’lc 1.’ ti lt b alled extent ,
similar calculations are nut presented here for bro-
mine and hydrogen bron,ide II’aw.’seI i.rnniine should
have an intermediate bel,asioi- be’) ,s eet. “lilorine and
Iodine according to the pi.ttei -n 01 the naelsibers uf

I :~!!! ~! ~ 
the halogen family.
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Table III. Equlilbalum sodium d.us&tles I. fv~ d silks aiddetics a.ibl..t as llCO’K. Oa~~e, at I at..

Water COsst.nt in ozyg .n~ 0 Water content in osygeo ~ 1 ppm Water content in oayg.n~ 30 ppm
Compound p(atm) N(cm-’) p(at m) N(cm ) 9(at m) Nc m

L -- ----— —-—— .  -— .——-— ..—— - .- .——- .  -

Na i.e x ia-” a c ii ’ 1.8 5 ii ~~ • a isa i.e s 10-” S iS’NsO 4.7 a ii- ” 3.5 a iia 5.7 a II-” 3.5 a iS’ 5.7 a 10-” 1.2 a
NatO 7.2 a 10- — 7.8 5 10” ' — — —Na011 — — 5.8 s 10-” 1.1 a 10’ S a 10-” 1.7 a 50’Na.(0l1). — — ii a 1$-” — 4.2 a 19 - ” —
Sodium number denaIt~r i_s a 10’ 3.3 a is’ 1.7 II’

Table IV. EquIlIbrium r.acliaas I. (Said alike tub.s at 1200 K visit cissilag viii 10%
ii H~ Is Ni earle, at l et..

Isasdes K )‘(atm) N(css~a)

lii i ~~ (g) -a SCi(g i 1.6 .1 10-’ p(CI) as 4 a 10-’
p(CI.) asS .5 a ia.’UI) ilCi($) -a 11(5) + d Ig) 5 a 10-” P(HC1) .0.1

old)— 3.2 a 10-’
1141 21115(5 -. St Hats) + St Cia(S) 7.5 it 10’ oWl,) 7.5 it 104
ti ll NaCI(l -a PJaCi(5) u S a  10-’ p(NsCul — 1.25 a 10-’ Ivapor prelsure l
(ii i 2NaCi(g • Na,Ci,(() 27.1 p(NaCi ) — 1.01 ,, 10-’ a.i a 1D’~117 1 P15.0 ‘ Ito, (in $90.) + Cids -a 2NICI($) + V. 0~(g~ + 8)O,(c I 6.4 p(Ni,Cls) as 2.76 a iO-’ 2.1 a 10”
(181 NatO ‘ 5)0. (in $10.) + CIa(s) -. Na,Cl.( g) + St OatS) + SiO.(c) 174 ,j 0(0.) — 3.9 10”

Sodium number density 5.5 x 10”lie) 2NaCi(g) -. Na,Cl. (~~) 27.1 p(N5C1I — 4.i a iO” 2.3 a 10”fill Na,O . SlOt (in 800.) + 20C1(g) -a ZNa Ci (g) + 11.0(5) SI0,(cI 0.42 p(Na,Cb) — 4. 6 a 10-’ I Sa  10”
1201 Na,O ‘SlOt (In 510,) + IHCI(g) -a Na,Clatg) + 11,0(g) + 8lO.(c) il.4 J 0(11,0) as 2.5 a 10-$

Sodium number density 4.5 c i a ’

Table V. Equilibaitim ,~~ctlouis I. fused silk. tubes et l300’K vies clasalag wIth 10%
Iso~ HI l~ N, cattle, at I it..

Riaction K P(st.a )

1211 34 b(g) ‘a 1(g) 0 467 p( j)  as 1.0 it 10’
p11,) — 4.1 it 10’(22 1 2111(5) -a Hs (g) + I,(g) 0.0005 ‘) p(t ) as 3.57 a 10-’

S. pI1.) — 5.axiO-’
(23 1 3)11(5) * H.(g) + 2i(g) 0.0509 1 p(H .) 2.36 a 10-’

.1 0(111) as 3.25 a 10’
124 1 11.1(i) -. Nal(g) 7.06 a 10’ p(Nai ) as 7.06 at 10-’ (vapor prealure )
125 1 Na,0 $10, (in 890.) + la(s) • SNsl( g) + 54 O.(g) + Sl0,(c) 9.3 a 10-’
1281 Nato ’ 590, (In 810.) a 21(g) -a 2Nal(g) + St O.(g) i. SiO,(c) 4.3 ii io-’ 3 p(NaI) as 5.3 5 1D

Sodium number density 5.3 a 50”
I f )  NatO ‘610. (Ia 800.) 4 27(5) 4 lb(g)- .  2Nz1(g) * lL0~g) * SJO~te) #2 a 10’
125 1 Ns,0’SIO. (In 510.) 4 2111(g) -a 2Nai(g) a 11,0(g) + SIOi(C) 54.2 J p(NaI) as 1.4 a 10-’

Sodium number dssislty 7.9 x 10”

p(Nada) can be estimated sbout 0.5 p(NaI , from similar results obtained with the chlorine system, No thermodynamic data are avail.
abS. to, Na,i .,

The Oxidation Atmospher, as a Sodium Contamination of Thermally Grown Silicon
Contamination Source Dioxide Films

An experimental test was made to check the validity The results of Tables I sod II indicate that in typical
of assuming that sodium becomes trapped In an oxi - fused silica oxidation tubes the equilibrium atmosphere
dation tube due to the evaporation-transpiration-con- contains atomic and molecular sodium species result-
densation cycle mentioned above. In a fused silica tube ing in a sodium number density in the 107-105 cm—’
operated at 1000’C “dry” oxygen’ was allowed to flow range, depending on the amount of water present.
at a rate of 4 em’/aec for 320 hr. The exhaust gas Due to the low density, sodium atoms and molecules
was passed through a 5% hydrochlorIc acId solution, contained in the oxidation ambient can be considered
After this period the solution was analyzed by flame as ideal gases. The number of collisions per unit time
emission spectrometry. The detection limit for sodium sodium executes per unit area on the wafer surface
In the solution was 10—’° glens1. No evidence of sodium Is expressed as (19)
was detected In the solution after correctIng for evap-
oration of the liquid. This test was repeated twice ,, = 0.25 Nv
with consistently negative reaults. Consequently, It
was concluded that sodium is not carried out of the where N is the sodium number density In the oxida-
oxidation tube, lion atmosphere, v = (8 kT/,on) St Is the average

There Is no apparent way of extracting from a fur- molecular velocity at temperature I’, k is the Bolts-
nace tube a representative sample of the oxidation mann constant, and m is the weight of the sodium
atmosphere. Other analytical techniques operating on species. The resulting value of p for T l300°K Is
gas samples removed from the oxidation atmosphere, lOll cm ’ . sec -1 for N = 5 x 107 cm 5. The presence
such as mass spectrometry, are not appropriate to of oxygen (1 atm) In the tube slightly modifies this
detect sodium due to condensation as the temperature number due to collision. with sodium atoms and
decreases. On the other hand , any analytical lnsiru- molecules.
mentatlon If introduced into the oxidation tube A number of reactions can take place between the
could change the oxIdatIon atmosphere equilibrium growing silicon dioxide film and the Impinging sodium
adding extra contamination, thus perturbing the mea- molecules as shown in Table VI. Sodium silicate is
surements. formed by reaction. [29 1 through 1351 which have

high equilibrium constants. As sodium from the oxlda-
and 50 ppm 5, drOearb~~i mi~2~iurJ 

c u.abe,I 9 ppm water tion atmosphere becomes incorporated Into the oxide
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Tehie VI. imperily reuct Inus with SlOs films is fused silica siddatis. tub. ebeosphatsa at l300’k

Reaction K

r )t at).5Hi )
11,0 g) -a Higi * 011(5) Lii iS-”

li 1 511.0 g).ct,(g p ÷20 11(g) s a l O - ”
I. H,0(g + 54 Os 5) • 2011(5) 53 at 10-’

(50) Ns,0(j) a Ia,.,(c) • aimo 510.515 5)0., IS  15”
150 1 5Ns(g) + St 0.(g) + IiO.(o) • NatO 810. (in 800.) 4 10”
1311 Na(S) + NaO(g) + 510,(c) ‘.Na,O slO, (In 810.) 1.1 a’ 10”
331 5NaO(g) + 5(0.10). NaO 510. (In 810,) , 54 0.55) 3 b ’

133 1 2Na0(g) + h u g )  a SIO.(c) • NatO . 8)0. (in 810,) a 11.0(5) 3.6 ‘a 104
($4 1 115.1011). a SIO.(e) • NsaO - 810. ( 11* 510,) a 11,0(51 e.i to’
132 1 1NaOll(g) + 510,1.) • NatO 510. (11* 810.) + 11,0(5) 32 a 10’

film, more sodium from the tube wall evaporates into with electric field of 106 V/cm (2). The results in-
the atmosphere, maintaining the equilibrium. dicate a clear correlation between cleaning of the

There are not enough kinetic data available to fused silica oxidation tube and the total mobile
estimate precisely the actual amount of sodium incor- Ion surface density In the oxide film. These measure-
porated into the silicon diox Ide film du ring the ox ida- ments indicate that oxide films grown in recently
tion cycle. The typ ical dry oxidation period used to cleaned tubes show mobile ion densities in the lOiS
grow a 100 nm thick oxIde film on a (100) sample Cm 5 range.
of silicon at l000’C Is about 200 m m .  During this Assuming un.iform contamination film in the mea-
period the oxide film Is subjected to about 1015 sodium aurements, these “clean” oxides exhibit an impurity
collisions per square centimeter. Parameters such as number density in the lObS cm ~ range. This cot ’ -
the wafer temperature, oxygen flow, and the water tamination level Is caused by impurities accumulated
content in the tube certainly Influence the oxide film during the device preparation process. It has been
contamination level At equilibrium, the sodium con- shown that radiation sensitivity of gate oxide films
centration in the oxide film grown on silicon should has no correlation with the mobile ion content in
be similar to that in the oxidation tube wall bulk , the ox ide as measured by MOS capacitance meas ure-
i.e., 10 ppm (_10i7 cm—3) . This consideration clearly ments after bias temperature stressing or high tem-
establishes that dry oxidation of silicon made in fused perature ramping (21) However a correlation t ’f total
silica tubes produces oxide films with a significant sodium content with radiation sensitivity in the oxide
amount of sodium includ ed; the upper limit is deter- of various MOS devices has been reported (22). These
mined by the Impurity level in the fused silica bulk. cons iderations suggest that sodium contamination in-
Whether or not this sodium which has chemically troduced in the ox ide film during ox Idation and metal-
reacted with silica to form sodium silicate In the film lization may play a prominent role in determining the
(Table VI) infl uences the electrical and radiation device radiation resistance. Phosphorus getter lng of
propert ies of MOS devices is a matter that needs the gate region or hydrochloric acid passivstion in.
detailed examination, creases the radiation sensitivity of MOS devices. Hence

It has been reported that structuralLy included so- to obtain reliable, radiation-stable MOS devices in
dlum ato ms in silicon dioxide films behave like im- the absence of gettering it has been suggested that
mobile Ionic contamination. Capacitance measure- high standards of cleanliness should be maintained
ments on MOS capacitors with a dielectric of sill co~ (21). This is specially applicable to the oxida t ion
dioxide doped with sodium to density of 1010 cm step. Alkali impurity introduced through metallization
showed that most of the included sodium is inactive should also be minimized by careful investigation of
from the viewpoint ~f both surface-state density and the mechanisms through which such contaminction
ionic migration under high electric fIeld at elevated is Introduced.
temperature (15). However. Instability of semicon- Conclusions
ductor devices due to sodium mobility in thermal The results of the present thern~odynansic calcula-
sIlicon dioxide film s has been largely recognized as tions ah~w that sodium included in the bulk of fused
a central problem in semiconductor technology. So- silica oxidation tubes is a significant source ~.l con-
dium was shown to cause instability under bmas-tem- taminatior, in oxidation atmospheres even it s’cdium
perature stress lii silicon devIces made by planar surface contamination produ ced by external agents
technology. Thermally stimulated ionic conductivity In the tube is negligible. The presen”e of wates in
measurements made on MOS capacitors using alu- the oxidation atmosphere produces a iapid buildup
minum or gold as the gate metal have shown that of the sodium number densIty fi’orn the lO~ cm ~
in sodium-doped gate oxide films with surface con- range, corresponding to dry oxIdat Ion, of up to two
centrations in the lOu _ lO is cm ~ range . sodium moves orders of magnitude greater for water concen’rations
itt tem peratures above 200-C under electric fields of a few parts per million. During the oxidation cycle,
as low as 1 2 y l0~ V/cm (20) . sodium is (nco rpom- ated Into the oxide fil m as sodium

Lu practic e ,nstabtlities due to sodium can be d im- silicate developing it significant contaminatIon level
m ated either by stringent cleanliness during oxide which can be potentially harmful for MOS device
processing or by the formation of a protective layer radiation resistance. Wate r ~nay be Incorporate’) an
such as phosphosilicate glass which can trap sodium the oxidation atmosphere through trace water or h) -

(201. drogen from hydrocarbon impucities included in oxy-
An experIm ental test was made in a carefully con- gen. and by ambIent water that .hff~ised k,tn the

traIled fused silica tube operated at l000’C and pen - oxidation chamber through the (us’ U sill, a tuba’ well .
odlenily cleaned In sifts with chlorine. Silicon dioxide Preparation of clean oxide films r’:qtuires the tonu rc il
films 50-100 nm thick were grown on (100) n-type of sodium impurity in the oxi.fat i,sn atinosnheie ‘11,1*
silicon surfaces using dry electionic grade oxygen in turn impo i.ea a alrI,,t control of the tube mater ’s)
and annnaled In situ after oxidation In dry nItro gen and appr o priate cure ct, neerning the ei uvuu,cnn 
for 30 n ’r,. ‘I’he metal gate v ’~a applied by evaporation conditions during water processing.
of 1 0m thick aluminum film in an electron-gun evsp-
nratnt MOS cppacltors were prepared and capacitance Acknowled9ment
measurements were made at room temperature before Thanks are due to T C. Rains from the Analytical
and after stressing the capacitors at 300 C for 5 mln Chemistry Division for the iesults on flame rmissi ,n
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spectrometry. The coflaboration of ‘F. F. Leedy and as the mole fraction (10 in the present work ) Pot
It. Y. Koyama of the Electronic Technology Division the reaction
in prepagtng MOS espicitors and in measur ing their Na~O . Si02 ( g u m  ½0m (g) -. 2NaO) g1 4 Si02 I~’~electrical properties Is highly appreciated. This work
was conducted as part of the Semiconductor Tech- the equilibrium constant is expressed as
nology Program ~t the National Bureau of Standards K _. ,iS(NaO> >< io~i~54 (O~iand was supported In part by the Defense Nuclear
Agency (IACRO 16-816) and the NBS. To evaluate K at a particular temperature T Imea-

aured in Kelvin I the following relations are used
Manuscript submitted Aug. 3, 1978; revised manu-

script received Dec. 20, 1976 ~~~ —. RI’ In K

Any discussion of this paper will appear in a Discus- ~Gr = 4H’sas -I. TI Z (G’i H ic.ss /’F)
sion section to be pubmlshed In the December 1977
JOusNau,. All discussions for the December 1977 Discus- where IN’150 is the heat of reaction, calculated from
sion Section should be submitted by Aug. 1, 1917. standard heats of formation as

Publication coats of this article were assisted by the .sR’rse — ~~ ~fl u.s(products ) — X 4kI’re~(reactanis )
Nat ional Bureau of Standards. [kcal/molej

APPEND1X~ 
amid X (0 7 — H~~,) /T 1s csl,ulat44l from Gibbe en-
ergy function in the standard stab at tempei uture ‘FCekulatiat. oi £qult.bnissu. *eectlen Cauistest fse~ IAt4AF Date

For a reaction xX + yY -. wW + zZ the thermo- — H’on)/T = 4Z (G a - H’ns) /T)pr,.,ea..,,
dynamic equilibrium constant may be written as .~ c~ ~~~~ Inca.50..5,. tcaL( K mold

‘This calculation follows uticadard tluermody,,amc,. formation,
K— lies Ret. )33)t
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Appendix 3

Reprinted from Journal of the Electrochemjcal Society
Vol. 125 , No. 1, January 1978

Prin ted in the U .S.A.

Thermodynamic Considerations in the Use of Polysilicon
Oxidation Tubes for Clean Si05 Film Preparation

Sonios Mayo’
National Bureau of Standard,, Electronic Technology Division,

Institute for Applied Technology, Washington , D.C. 20234

and Williom H. Evans
National Bureau of Standards, Physical Chemlitry Division,

Institute Jot Materials Research, Washington, D.C. 20234

ABSTRACT
The thermodynamic equilibria establIshed In oxidation atmospheres Inpolycrystalline silicon tubes operated at l000~C are analyzed. Silicon oxlda-tion tubes made by chemica l vapor deposition through hydrogen reducti onof pure trichlorosilane have very low sodium content (about 10 ppb or 1000times less sodium than In transparent fused silica oxIdatIon tubes). Due tothe low sodium content in new oxidation tubes, clean (low alkali content)thermal oxide films can be grown on silicon wafers. However, tube contamI-nation developed dun n9 semiconductor processing operations imposes theneed for appropriate periodic tube cleaning to maintain sodium contamination

in the oxidation atmosphere within acceptable levels. Tube cleaning reactionstaking place at oxidatIon temperatu re are dIscussed showing that the quality
of thermal oxide films is influenced by tube cleaning efficiency,

Preparation of thermally grown clean oxide fi lms on the understanding of the role played by alkali ionssilicon wafers has great techn ological impact on suc- in such films is not complete, especially concerningcessful microelectronic device fabrication. Although the behavior of electrically “ active ” and “ inactive ”
£lect roch. micui society Active Member, contamination (1), the presence of alkali species InK y  word.: alkali contaminatIon, clean 510, Al.., utcroel,c.

tussle davieS preparstlse. 1101 Structure.. erma y grown s I con uioxiue nlms as uvan cx-
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perimentally demonstrated to cause ionic conductivity wall. The diffusion coefficient of aodium in polycrys-
and consequently instabilities in metal-oxide semi- talii ne silicon is higher than in single ci yatal silicon Iconductor (MOS ) devices (2-5). The presence of so- due to grain boundary effects. At l000’C the latter is
dium and other alkali species in thermally grow n I) 3 x 10 ~ cm2/siet’ 126 1 Similar effects were re-
oxide films used for semiconductor device prepara. ported on the diffusion of boron in silicon at i050’C
tion has been extensively investigated (6-8). Sources (21).
of alkali contamination have also been investigated in The work p,esented here is an extension of the pre-
processing ma~cniais (9-13), in oxidation furnace Fe- vious analysis on the behavior of fused silic, oxidation
fractonies (14), and in evaporated gate metal films tubes at 1000’ C (23) ,1 Silicon oxidation tube behavior
(15). Addition of about 5% ch lorine or hydro gen- resemb les the fused silica tube behavior except for
chloride to the oxidation atmosphere has been re- the initial low sodium contenl when the tube is new.
ported to enhance the electrical stabiiity of Si-Si05 The effects of HCI cleaning oii these tubes are also
structures, both through cleaning and p.sslvsting analyzed.
effects (16-22). }iCl diluted in an Inert gas carrier Ozidatia. of Silicon Wafers ii, Silicon(concentration up to 10%) is used for periods of Ozidoho. T ibiaseveral hours immediately before ox idat ions to pro- The kinetics of silicon oxidation have been cx-duce low mobile-ion content thermal oxide films for tensi rely studied by different authors for a number ofMOS device fabrication, temperatures In the range of 800’- 1200 C and for pIn a recent paper (23) the development of sodium several oxidation atmosphere compositions containedcontamination in oxidation atmospheres contained 

~ in fused silica tubes (moat early work on th is subj ecttransparent fused silica tubes operated at t000’C Was Is listed in bibliographic compilat ions on MOS tech- Ianalyzed thermodynamIcally In terms of the impurity nology (9,30)]. it was shown that the addition ofcontent primarily included In fused silica bulk re- trace amounts of water to the oxidation ambientsuiting from the tube manufacturing process. Trana- causes a significant increase of silicon oxidation rateparent fused silica tubes currently used In most semi- for all silicon orientations (31). It has also been shown 4conductor processing furnaces contain about 10 ppm that the equilibrium sodium density in oxidation at-sodium (24-25). In situ cleaning of fused silica tubes moappieres at 1300 K significantLy increases when aat 1300’K results in removal of material from the few ppm water are added to the ox idat ion stmo -inner tube wall surface creating a sodium-depleted sphere (23). From these results it can be stated thatlayer. This In turn reduces the sodium content in the the preparation of clean, low mobile ion content ox)deoxidation ambient, allowing the thermal growth of films on silicon wafers Is controlled primarily bycleaner oxide films on silicon wafers. However, due tO four parameters : the oxidation temperature, theits high diffusivity in Si02 ID = 2 X 10~~ cm1/sec at amount of sodium (in general , alkalI) contamination
l000~C (26)] sodium from furnace refractories or in the tube wall bulk, the amount of water content infrom the room atmosphere around the oxidation tube the oxidation atmosphere, and the furnace environ-may be incorporated into the fused silic a wall con- ment. The use of strictly controlled hydrocarbon-freetributing to the maintenance of its contamination dry oxygen in addition (u alkali-free oxidation tubeslevel. When fused silica oxidation tubes are replaced operated at high temperatures ( above i000’C) mayby silicon tubes, the conditions established in the oxi - result in clean thermal oxide preparations it appro-dat ion ambient are expected to be more favorable pilate care is taken concerning clean room environ-f or  growing clean thermal oxide films on silicon Wa- ments around oxidation facilities. For high tempera-(erg. This is caused by the low sodium content in sill- tore (close to 1200’C) processes where devitr ifi cat ioncon tubes fabricated by chemical vapor deposition of fused silica may produce serious problems , silicon Ithrough hydrogen reduction of trichloroeilane. This tubes are preferred due to their better mcchanicai be-process produces high purity polysilicon with only 10 tiavior and low sodium contamination level.ppb sodium contamination, 1000 times lean sodium In the present work , the equilibrium atmospherecontent than in fused silica tubes t28). However , due established at 1300’K in a silicon oxidation tube wasto external contamination sources (i.e ., sodium from studied theoretically for a number of cases of prac-refractories and room ambient) , periodic in situ clean- tical interest.2 Table I shows the equilibrium atmo-ing of the tube is necessary to maintain appropriate
conditions in the oxidation atmosphere The cleaning ‘ For tha i. th.rmodynaaic calculation. data at 1300 K are used.

Tb. sche me for th.e. calculatIon, Is outlined In the appendixinterval for both fused silica or silicon tubes As deter- of lil t. 23. b.cmuae of errors and approalm at ions invoive d In thee.
mined by the boundary conditions at the tube wall modynamic data used to evaluat e in. equil ibrium resuiU. an Lb.

Solute error of ~.5I% could be .xpect.d In the ., calculatio n.. Theouter surface and the diffusion of sodium in the tube retet,v. error is much smelter.

Till . I. hailibrium oti.eepl.ere is silk. . vet exid.tls. tube at 1300’K
Sodium content in silicon bulk: iS ppb, oxygi n at I atm, water at 10 atm

K Prod~~ Pi.~~~,

SIt’ ~) + Oh s) • IiaOtsi -, 510,(c) • (SH,(gi + 011(5, 254 ‘C II’S 0, I.,
2K.tgi • O,(5~~.2H (5) i35 s *’ H,~g, cii is”
Sll c i • O,(g, . siO ,ic, 1.5 * iS” OK 410 • 10 ’
sIOig l + 5) -, $lO.ic, 5.50 • IC” 1110 ii”

Na,O tl . iiNs10 Si0.tc, 
~~~~~~(Ci Ntl10tli~ • 2 011.1, S.d o I ~ N. $50 • II’NLO iOs(c) +

NagO 5i0,,c’ + 11,0-, 1lOu(~H)tgi , 11140(g) • 055~g~ 1.1, • ii-” $1010111 5.13 • ii”15-” 51(011,, 1.13 • ii11510• SiO..c, $ 11.0. $i.oIt~~,g, 5 01(51 s 11uuisi 1.1$ 
~•~

_ 5101011,. 144 • ii”PimO - 5i0,(ci • 55,0 • 510(0 1.45) • NasOts, 233
NagO S&Oitc, • *si.o * SitOHi.lsi , pia.o g, i:I7~~ i.’ 1(10111, ~~~~ •
SNa,t) .(e , . 311.0.11,010 5(51 $ 5111*0(11 1.31 ‘ ii-” 51,01011,. 1.31 • 15-’
Sh e, + 211 is , • $tO,(e) • 211,ig) 1.33 • ii”
Site, 11.0th $f~~s i • Outs , Lii ’ IS- ’ Slit LOS - ii”Site, + 2lk0(SI-.1 ‘ii, . O,,gj Lii • Ii” Sil l. 5.05 . iS’
81(C) + 3,5 0,15, $ 2Ns(gi -. N SIO,ICI 7.i4 a Lu’
Site , 51$ O,~5. SNail) .Na,O S$1O,.c, iii • ii ’
Naa0 - SlO,tci + kio te) • P55.0 2510,(c, 0.544 

• ,• ,,Na,O~g) + 5t (h i g , . SN S O( I i  5.42 11.0
Na0ig~ + 11,015) .. Na0li(g~ s Ollig) 4 10 11.011 1.77 is ’ a... . is’ —is ’
211a0 (g i -. Nagt OlSjo tg i ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 .Y~’ .. . . —

Rapid formation ci a allies Ala on the .hilcon tube.
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sphere resulting in a typical silicon oxidation tube siozi in polys lllcon will reduce this limitation. The
operated at 1300’K using pure oxygen at I atm plus density of the resulting species at the aurtace could be
100 ppm water. Sodium in the tube wall mIght be as- lower, thus reducing the amount of sodium (or other
aumed to be sod ium metasillcate tNa1O . 5i01 (C) J and specIes) actually removed. No attempts are made
sodium silicate [Na50 ‘ 2S105(c)]. Measurements of here to explore the kinetics of these reactions .1-
sodium vaporization from silica glasses (32) Indicate though it can be seen that hydrogen chloride cleaning
that sodium met.silicst.e might be dominant; devia- is predicted to be very effective in agreement with
tiona of the valtie ~H’1ai, — S’ItB kcaI/molu calcu- current empirical observation.
lated for Na10 ‘ SiOs(c) from the JANAF value (33) The use of dry chlorine as a cleaning agent of sili-
is ascribed to solution effects of Na,O ‘xSiO5 species. con tubes should be avoided because of the risk in-
Silicon and water react to form SiOs(c) (equilibrium volved due to its high reactiv ity with silicon. Table
reaction constant IC = 1.33 x loll). Sodium m ets - III shows that the tube could be severely damaged
silicate Is incorporated in the oxide film devsloped on by chlor ine if the protective silica film deposited on
the tube wall and evaporates to bui ld up in the oxide- the inner tube wail has pinholes through wh ich chlo-
tion chamber an atmosphere containing about 101 so- rine may come in contact with silicon to produce
dium atoms/cm3, including both atomic and moleculi r quantities of SiCl4(g), S1CI,(g), and SiCl,(g). How-
specIes; NaOH is the moat abundant compound. If no ever , if water is present in the system, hydrogen chlo-
water is present In the oxidation ambient, th. sodium ride is generated , moderating the aggressive behavior
content is negligible I P(NasO) = 1.9 x 10-s atm J. of dry chlorine.
This condition prevails u long as the sodium l.vsl In .
silicon bulk is only 10 ppb, Ox.datioa Tubs Coaddio.ung

The silica film formed on the tube wall can be re-
Ozidatioi, Tub. Cls..imp moved by hydrogen at oxidation temperature. The

Periodic in situ cleaning st oxidation tempera ture is formation of water generated through the hydrogen
required to keep silicon oxidation tubes clean under silica interactIon contributei to the leaching of so-
operative conditions. Dilute hydrogen chloride ii gen- dium from the tube bulk. Table LV shows the relevant
erally used for rather long periods In the oxidation reactions taking place in the tube when 100 ppm water
cham ber to assure proper cleaning of th. wall, As. (10 - 4 atm ) is present in the hydrogen atmosphere. So-
suming 100 ppm water (10 - atm ) in addition to IGT~ dium compounds such as NsO, NajO, NaOH, and
HCI in a silicon tube operated at 1300’K, the relevant Na2(OH)1 are formed in addition to atomic sodium.
reactions occurring are shown in Table U. Sodium The total sodium equilibrium pressure in the tube
chloride is formed from the InteractIon with sodium atmosphere is 1.82 x 10-’ atm resulting in a number
glasses contained in the aitica film formed on the sili- density of 1.03 x LW ’ atoms/cm3 where the atomic
con tube wall. At equilIbrium, the sodium number species ía the moat abundant one due to the reducing
density In the atmosphere Is 3.61 x lOiS atoms/cm3. action of hydrogen. Although the use of hydrogen
This is l0~ times larger than the equilibrium sodium around an oxidation facility involves risks and diM-
density normally present in the oxidation ambient. It culties which may make it Impractical, it is of value to
should be emphasized that these results refer to equi~ observe that the use of diluted (less than 4%) hydro-
librium conditions. Although moat react ions proceed gen in an inert gas csrrisr could make this procedure
rapidly at the Inner tube wall surface , diffusion effects feasible by eliminating the risk of forming an cx-
in the bulk may limit to some extent the applicability plosive air-hydrogen mixture. If such an atmosphere
of this analysis. However, the enhanced soditin% difiti- is maintained in sit~co~ oxAd~tion tubes when they are

Tibia II. Equilibrii., almespher. I. silks. oaidst laa tube cu ssed with hydrogen chierida at 1300 K
Sodium Conten t in silicon bulk: 10 p94, hydrogen Chior id. .10.1 atm, Water at 10-’ atm

Reaction K Product P (at m~ Na ic m- i

NagO . 8lOh(c) .+ 2liCi(g) • StO.(c) 4. $NaCllg ) • 51,011) 0-is NacI 641 • iS-’ 350 10”Ns.O . SlOrici + 2iICi(g) • di (O1i,,(g) • INaCi(gl • (4 O,(gl 5.03 • IS-” SiiOHi, 155 , tO-”Na,O . 5(O,(c) + IHCI(g) * 810(0111(5) 4- 2NaCIlg) + 011(5) 1.35 ii 15-” 810(0114 5.45 • 10-”Na,O SiOftc) -,. IKCIigi 11,0(g) -. 5tiOU~,ig , + INsCi(gp 5.45 • is-’ 81(055,, 2.01 a t O-”2115,0 - StO.(c> 4HCitg) 4- 111.0(5) • 81.0 - (0511.15) + 4N5CII5I 395 tO-” 11,0(055,, 2.26 iS”Na,O . siOa(C) + 3HCHI) -‘ SICIJI,tg i + 3/2 Ot(g~ • titaC iig) 4.55 • 10-’ SICIII, 5.50 • 10-”
Na.0 . SlO,(c) + 4HCH51 • SICIISI,(g) + I O, gt 2NsCligI • 11.0(4, 7.36 ~ 10-’ 5iChH, 1.05 a 10-”NagO . SIO,(c) IHC1(gi -, S1CIaH(gi s. (4 0.(gl * 2N CI(gj • 2U.Oig~ 3.53 • Ii- ’ SICISH 0.51 • hO ’Na,O - 155(4(c) i. SHCI(g) • 5)CI,(si + 0)1(51 * 3NaCi(g) 511,0(51 4.24 iS-’ SICI, 5.45 * 10-’Na,O - SiO.(C) + 4HC1(g) • SIC1.(g) $ (4 O.(g) 2NaClhgI + 5511011) 5.35 ii i.-” SICI, 9.91 ii 10-’-Na.O - SiO,lc) + 6HCI(g) • liCisig) + 2NaCh(gi • 311Og 5.50 • 10-” SICI, 9.04 • 10-’2NaCi(g i —, Na.Ci,(g) 21.1 Na,Ch 1.14 ii .~ 6.43 • 10”Si(c) RC1tg) • SICI,l1) 4- 2itrigj 3.50 • is’ 51(0111. 1.57 • iO- ”5i0,(ci + 1110 (5) • 81(051), + (4 0,45) 3.15 • Ii- ’ 0, 1.57 • 10-”)f,0Ig) + Ci.(gj -. 2sICi + (40,  1.29 a ii ~ Rd 0.1HCi(gl • i4H.tg) + ‘ibCi,Ig) 1.5 • IS” Ci. LII • ill-’((CUll • Kill i. CII5) 1.0 • IS ’. CI 1.17 • 10-’
H.(gl • 255(g ) 1.2 • 10- H 5.57 a 10-’11.011) • 0(5) • 011(g) 1.54 -. i0-” H. 5.12 * 10-’
2i1.0,g; • H’(g) * 2 011(5) 2.0 • 10-” 015 1.50 * 15-’5510(g) + (4 0.18) -‘ lOu is) 2.5 a iS- 55.0 iS-’

Table Ill. Ieac sio. co .ataats r.sultl., is dittos osIdatias tubai classed vIsh chIg~t~, SI llOO’l(
sod ium content (a silicon bulk : 10 994, chlor in, at O h .ta

Reaction K ProduCt P (at m)

sflei + 2Ch15) • SICL($) 3.77 * IC” 5IC1, 3 77 * 20”
+ SCull) • 28.CIri5I 4.74 ‘ I0~ 5lCh 5.91 • ID”’Su et • Cl,(g) $ICi,(5) 1.30 * IC’ 51C1. 3.35 • 10’SIO,(e) • SCi.(gj -. S,CI,(g) + 0,11) 2.11 • IS-’2S)O,(ci * 3Cbigt . ISiCI,(g) + 20.(gi 1.4$ • 10-’

SI0,(ej + CisIg) • liCk + O,ig~ 1.51 • 10-”
NasO SiO,ic, + Cliii) • 5i0,tcj $ SHad(s ) + 1, 0.151 1.43

‘Rapid formation 01 111.51 coispound,.
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Taki. IV. £qlkkmse a eaipha.a is silk,. aasdusla. lab. classed silk w et bydlogs. al 1380 K
godIt. i, q.onta,I UI aihucol, bulk . iS p94 hydrogs~ at 1 aim. waler at 10 • aim

Reaction K P,uduct I’ ,at m, Na cm-’ ,

8l0.ie , . iI,,g, Slo tS, * 5111(51 ‘ 3011.51 7.98 II” 8415 250 ‘ iS ’-
5l0.,~~’ , 5H.ig ’ 

~~~~~~~ 
0.00 ‘ ii” 8tH, LIe - 10-”

11a.0 lilhiC’ 51.15’-’ INaisi 0.43 ‘ 15’- Na 102 . t O- ( 113 ’ iC’
Na.0 . 5i0,is , ‘ Stills • 5(15(5) + Ollig) • 5, 110 IO~~ 15.0 525 • II”

5)0,,e, • siL ,g, -. $43015) $ U10tg , , SNsOHigp 1.0 IS-’ NaOIi ‘74 * 10
• 55,015, * IaO,(e, 251*igi 1.33 • IS”

SNaOII*gs • IDa.iOlIi.(gi 4.7$ ~~~~~~~ 1.45 • IS-”
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